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Use of Iverson's language APL for statistical computing
P. J. Anscombe

1, STATISTICAL COMPUTING

A symposium on statistical computing was held by IBM in 1963; the pro-
ceedings were subsequently published [ 10 7]. Another such symposium was
held in London in 1966; papers have been published [ 1% 1. During the
latter symposium a working party was formed to coordinete and stimulate fure
ther developments in statistical computing.

Prominent among the topics discussed in the ILondon symposium and else-
where in the recent literature are

{i) standardization to facilitate exchange of information,

(ii) communication between persons and computers.

Under item (i) come questions of standardizing the layout and coding of
tape files of statistical data -- for example, files of material collected
in a sociological survey. The aim here is to permit copies of the tape to
be studied and used by workers at different centers, using different comput-
ing equipment and possibly different languages. Suggestions have also been
made for standardizing some features of computer programs. Standard variable
names would facilitate reading of programs by others. Good documentation
and testing of programs are stressed.

Standardization is not discussed in this paper.

As for item (ii), the computer has not so far had the profsund effect
on statistics that it has had on some other fields of science and technology.
Statistical method as generally practised today was largely developed during
the period between the world wars, 1918-1939, and was conditioned by the
principal computing resource of that time, the desk calculator. In recent
years numerous computer programs have been prepared to reproduce on a large
computer the kinds of calculations formerly done on desk calculators. Such
programs have greatly aided statistical work. But the potential aid from
the computer is vastly greater. If large amounts of computing can be carried
out rapidly and with little effort by the investigator, output can be asked
for that formerly was not thought of because it was unthinkable. A challenge
is offered to statistical theory: if almost any output can be had for the
asking, at almost no cost, what output should be asked for -- what questions
is the output relevant to, what can be made of ite
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There has certainly been some progress toward realizing the potentialities
of the computer in statistical work, Many new techniques have been tried.
The main reason why more progress has not been made is, presumably, that com-
puters are hard to communicate with. The o0ld desk calculator had some merits
not found readily in a large computer. In laboring over the figures, the
operator of g desk calculator sometimes obtained unexpected insight, and
could at any moment modify his plan of calculstion. By contrast a computer
program is liable to seem uninformative and inflexible or, if informative
and flexible, then confusing.

Statistical analysis is experimental. It has always been so to some
extent, it will become more so in the future. When a statistician is pre-
sented with some data, he may know what analytic steps he would like to see
carried out first, but he cannot know until he has explored the consequences
of preliminsry analyses what he will come to consider a satisfactory final
analysis of the data. Good statistical analysis is done in steps. Methods
must be adjusted to fit the data; the adequacy of theoretical descriptions
or "models" must be assessed. The task of statistical analysis is much less
well defined at the outset than the task of, say, tabulating a mathematical
function., Interaction between the investigator and the computer is required.

The persons who have occasion to use computing equipment for statise
tical analysis are very diverse in their knowledge of, and interest in, both
statistics and computing. A facility that is attractive to one may be
intolerable to another. TFor example:

(a) Consider a researcher who works in a field that yields statistical
problems, but who is not himself primarily a statistician. He wishes to use
good statistical tools to better his understanding of his field. He is not
interested in statistical methcds for their own sake, and does neot wish to
experiment with them (more than he has to). The less he must be cencerned
with the technicalities of statistical calculations the better.

{b) At another extreme, consider a statistician, interested in the
development of statistical procedures, interested in relevant mathematics,
interested in particular bodies of data mainly as examples of statistical
problems. He may be happy to use a computer program written by someone else,
but only if he fully understands what the program does. If communication
with the computer is easy enough, he generally prefers to write his own pro-
grams, so that he may do exactly what he wishes, rather than what someone
else has wished.
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Numerous attempts have been made to accommodate Man (a), Many program
packages have been written, for operation in batch mode, in which the user
specifies various options in output. The BMD biomedical programs [ ? 1 are
a well-known example. When operation in conversational mode is possible, the
computer can "take charge” of the whole procedure, by interrogating the user
about what material he wants analyzed, explaining to him what procedures are
available and asking him at each step what he would like done next. Such an
interrogatory system, if well designed, can give assistance va,nd guidance to
the user, while permitting him considerable freedom of choice. Examples are
Schatzoff's system COMB for two-way tables ['151% and A.J.T. Colin's statis-
tical system ([ ,, 7, pp. 111-119),

It seems likely that much further attention will be paid to this type
of system. The problem of designing one is not only statistical but psycho-
logical, How can the interrogation be conducted, so that misunderstanding
is unlikely, guidance is offered to users who need it, and the system does
not seem excessively clumsy to experienced users who know how they wish to
proceed? ,

As for Man (b), he needs to be able to write his own programs. An
explosive development of statistical science can be expected once programming
can really be done by any interested person, without a large preliminary
investment of time in mastering a computer language and without much time
gpent in actual coding. {Time spent in deciding just what to do and how to
do it is another matter altogether, for which the computer and its software
should not be blamed!} No doubt Man (b} will make use of previously written
programs (preferably written by himself), but he needs also to be able to
improvise.

What makes programming so tedious in FORTRAN and other commonly used
languages is the negotiation of arrays. Arithmetical operations are required,
not just on individual numbers, but on whole vectors or matrices; and in
these languages such operations must be spelled out in loops -~ loops, and
loops within loops, initialized, ranged and fussed over. Numerous attempts
have been made to lessen the tedium through special computing systems designed
for particular types of user. It is noticed that a certain type of user is
mainly concerned with a not very broad class of array operations, and a
vocabulary of such operations is made available to him as a special system.
Thus OMNITAB [5 ] was based on the fact that much of the work of tabulate
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ing mathematical functions and also of processing experimental observetions
involves a small variety of operations on vectors, and so these are made
directly available in the system. STORM [ 9 7 provides a library of matrix
operations designed for analysis of variance and regression calculations.
COSMOS (Schatzoff [12 1) offers primarily six basic operations on vectors
and matrices in terms of which analysis of variance, factor analysis and
other quadratic calculations can be readily expressed.(l)

The capital difficulty in designing any such system is to know when to
leave off., As soon as the user is able to perform his standard calculations
eagily, he finds he sometimes wants to do further things not already provided
for. There is pressure for the system to be extended, extended even to the
point that it encompases everything that can be done in a general-purpose
algorithmic language like FORTRAN. But now the system must be quite rich,
because of the diversity of logical operations that occur in programming.
What was st first a collection of a few easily remembered commands becomes
something much more intricate and difficult to assimilate -- though possibly
effective and worth assimilating. ,

The purpose of this note is to suggest that XK. E. Iverson's language
knovn as APL (after the title of his original book on the subject [ 6 1,
though not developed specially for statistical work, is in fact very suit-
able for this purpose. Two salient reasons are:

{i) APL was designed at the outset to handle {almost indifferently)
scalars, vectors, matrices and rectangular arrays in any number of dimensions.
All the basic arithmetic operations can be performed on arrays just as well
as on scalars, without any loop written in the program. Programs in APL
therefore tend to contain few loops. The programmer is encouraged to think
of arrzy operations as entities without a logically irrelevant internal
sequence; this is aesthetically pleasing, even illuminating,

{(ii) There is a high degree of consistency in APL, resulting from a
high degree of generality in the definitions. Syntax is governed ruthlessly
by a very few simple rules. Once the basic vocabulary is learned, the
language is easy to remsmber. There is a remarkable absence of arbitrary
features that require frequent reference to the manual. The language there-
fore has a peculiar dignity and rcasonsbleness. One feels it is worth learn-
ing.
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Yhat is likely to prove the relative usefulness of APL for statistical
computation, compared with special statistical systemse It has already been
suggested that some users, including Man (a), will be best served by an inter-
rogatory system in which nothing that would ordinarily be called programming
is called for. Other users, with technical interests intermediate between
those of Man (a) and Man {b), will be able to make good use of a noninter-
rogatory statistical system. The more the user resembles Man (b), the more
directly he will wish to control his computing and the greater the variety
of computing he will wish to do. Man (b) will, as it seems, be best served
by the best general-purpose algorithmic language, which at present appears
(by an order of magnitude) to be APLg(Z)

If this last conclusion ultimately receives general assent, the situa-
tion in regard to statistical software will resemble that for hardware, In
the later 1940's, before big computers were generally available, discussions
were held between statisticians and computer experts about statistical com-
puting. Would it be possible to develop a machine for analysis of variance,
heving special facilities for swming squares and products? The experts
advised against this; the effort would be better expended on é general-purpose
machine. We see now that their judgment was right. If a good-enough generale
purpose machine is available, no one wants to be handicapped with a special-
purpose machine, The situation seems to be similar with software.

2. DESCRIPTION OF APL

Iverson's programming language, as originally published in 1962, was
intended for precise and concise expression of algorithms, so that computing
procedures could be discussed and communicated. It differed from ALGOL in
having a larger vocabulary, a more powerful syntax, and a notation and way

of thinking closer to established mathematics.(B)

No attention was paid to
the existing peculiarities of computer hardware and organization, nor to the
existing meagerness of key-punch character seﬁs.

Recently a modified version of the language, called APL-360, has been
implemented experimentally at I's Thomas J. Watson Research Center, York-
town Heights, W.Y., as a coding language for computation in conversational

i t is an IBM 360 model 50
mode through typewriter terminals. The computer 1s i e
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(a2 model 65 or 67 is also used). fhe system is inferpfeﬁiVe; programs are
not compiled. ©No language other than APL is accepted in cofiversational
mode (unless a translator into APL is available), Emphasis tip to now has
been on development and improvement of the system, with only a modest scale
of implementation. High-speed input and output devices have not been in-
corporated; workspaces have been small.(u)

What follows is a partial description of APL, as it can be used in the
above-mentioned experimentsl implementation, for statistical computation.
The complete facilities available are described in the menual [%]. This
partial description is intended to convey the feel of the language, without
introducing the reader too suddenly to too great a flood of unfamiliar nota-
tion. 8Slight previous acquaintance with FORTRAN or other archaic language
will be presumed, but for the benefit of the unacquainted there is an appen-~
dix on some common computing terms,

(a) Preliminaries, standard scalar functions

The system can be used as a desk calculator. If the operator types
"z X 3" and then touches a key to transmit this message, the computer
responds by causing "6" to be typed on the next line., When the keyboard of
the terminal is unlocked and ready to receive a new command, the typeball is
in such a position that the operator's command is indented six spaces, whereas
the machine's reply is usually not indented. Thus a reader can tell which
party typed what. See Figure 1. (8till clearer distinguishing can be effected
on some terminals by use of a two-color ribbon, arranged so that the operator's
instructions are in red and the machine's replies are in black, That refinement
is unnecessary, however.)

Usually when a calculation is made the operator wishes to store it for
future reference under a name. The name may be a string of one or more
letters or digits starting with a letter. Assignment of a value {(or other
content) to such a name is denoted by a left arrow. If "2 X 3" is assigned
to the name X (see line 3 of Figure 1), the machine does not type anything
in reply, but when the calculation has been done and the result stored under
the name X the carriage is shifted six spaces and the keyboard is unlocked
for another command.



2x5 1. Command typed by operator.

6 2. Reply by conputer. .
X+2x3 3., 2x3 stored under nane X.
X42 4, Display x+2.
8 5. Reply by cunp&ter.
24X+2x3 o, Two previous orders coimbined,
8 7.
X%2 8. X squared. Ur: XxX
36 9,
XeX+4 ' 10. Value of X changed to 10,
. A+242 11, Divide 10 by (2+2).
2,5 12,
(X22)+2 13, Or: 2+Xx:2
7 14, '
65 15. The greater of 6 and 5,
6 lo.
6L*2 17. The lesser of 6 and €.
6 18,
317 19. Nunber of combinations (7).
35 20,
1=4%10 21, Is (X#10) equal to 17
1 22, Yes, that is true,
3xi>0 23, 3 times the truth value of (X>0).
3 24,
X<3 25, Is X less than 67
0 26. ko, that isfalse.
X36 27, Ur: [QeX:6
1.666666667 . 28.
0.01xL 0, 5+100%X%6 29, (Xs6) correct. to two decimals.
1.67 30. |

FIGURE 1. Dialeg in APL on the left, Comments added on the right.
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Whenever the typed command does not asgign all calculated quantities to
names, the unassigned result is typed out. Thus when we typed (in line 1)
just "2 x 3", without assigning the result anywhere, we obtained the typed
reply "6". But when 2 X 3 is assigned to X, nothing is typed in reply. We
can call for X later by just typing X; since X is not assigned anywhere by
that instruction, its value is typed out. In Figure 1, X + 2 is asked for
at line %, (It is possible to refer to the typewriter as though it were a
named variable; its name is a square symbol called "quad". We can ask for
a result to be typed out by assigning it to quad, as shown in the comment at
line 27 of Figure 1. This alternative way of asking for a display is sometimes
useful, as we shall see.)

The two commands, to calculate 2 X 3 and store it under X, then add 2
and display the answer, could have been combined in one instruction as showm
at line 6.

This illustrates a very simple syntactic rule of APL that saves much
trouble in the long run but takes some getting used to. When a command con-
tains more than one operation or function, the right-most operation is per-
formed first, then the next right-most, and so on. Thus in a sense the
machine reads from right to left. In the composite instruction of line 6,
the machine first computes 2 X 3, then stores that under the name X, then
adds X onto 2, then (having nowhere else to put it) types out the result.

If we wish to modify this right-to-left execution we must use parentheses -=
conpare lines 11 and 13.

The four elementary dyadic functions of arithmetic, addition, subtrac-
tion, multiplication and division, are denoted by their usual symbols (+, =,
X, =). Exponentiation is denoted by a star instead of by raising the expo-
nent ~- see line 8. A good many other basic dyadic functions are recognized
and given special symbols, the symbol denoting the function always being
placed between its two arguments, just as with +. Examples are shown in
Figure 1. DNote that symbols like =, >, <, ...’stand for functions taking
the truth values 1 or 0 according to whether the corresponding statement is
true or false,

Some of these function symbols have a meaning as monadic functions when
no argument is placed in front. Thus -A means 0 -~ A, the negative of A; & A
means 1 <+ A, the reciprocal of A; *A means the natural exponential of A, or eA;
!A means factorial A. The I-like symbol that means "the lesser of" when
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placed between two quantities (line 17) means "the integer part of" when it
has no argument preceding it (line 29).

Numerical calculations are performed by the machine, according to need,
either in single-precision integer arithmetic or in floating-point "extended
precision"” arithmetic with precision equivalent to about 14 decimal digits
in the mantissa. Results are ordinarily printed with ten digits, except
that trailing zeros after the decimal point are omitted.

There is no vocabulary in the language relating specifically to format,
and no requirement that formats be specified. For many purposes there is no
need to control the format of typed output, except sometimes by the rounding
procedure illustrated at line 29 of Figure 1. The language has facilities
for character manipulation, which however are not described here. With these
it is possible to control the format of printed output as minutely as is cus-
tomary with other languages such as FCORTRAN, and that should usually be done
if the output is to be a table or other matter for photographing. Such for-
mat control is not illustrated here.

It so happens that every number shown in Figure 1 is positive. Negative
numbers are typed with a "high minus" sign in front of them, regarded as part
of the number, not as a function. Compare lines 1 and 3 in Figure 2.

80 far we have considered only single numbers (scalars}. The peculiar
virtue of APL for statistical work will not appear until we come to arrays.
But at this point two cleannesses in the language should be noticed. First,
there is quite a rich vocabulary of standard functions, each represented by
a single symbol (not all of them have been shown in Figure 1). In accordance
with ordinary usage for addition {+) and multiplication (X), all functions
that have two arguments are invoked by placing the function name between the
arguments. Thus we write AfB rather than f(A,B), where f is the name of the
function and A and B are the arguments., Similerly, if a function has just
one argument, the argument follows the function name, as in fA. These con-
ventions apply also to functions defined by programs, as we shall see below.
Thus all functions, whether they are the basic operations built into the
language or defined functions that some people would term "macros”, are
referred to and called in similar style.

It should also be noticed that no rule of inherent precedence among the
basic operations (or any other functions) has to be learned. The only prece-

dence comes from position, according to the rule that execution is from right
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to left. This rule is harder to keep in mind than one might suppose, because
it sometimes opposes common usage. Unfortunately, common mathematical usege
{and also FORTRAN programming)} involves a mixture of left-to-right and right-
to-left reading and many arbitrary special conventions. No precedence rule
can appear equally natural in all circumstances. APL's right-to-left conven-
tion seems pleasantly simple and unambiguous after the first shock.
(b) Arrays

A variable name in APL can just as well stand for an array as for a
scalar. The members of an array may be either all numbers or all characters
(letters, digits and other symbols of the language); but character arrays
will be touched on here only very lightly. No initial dimension statement
is made, and the same variable name may stand for arrays of different sizes
at different times in an extended computation.

The permitted kinds of array are (i) a vector, (ii) a rectangular matrix,
(ii1) a rectangular array in three or more dimensions. Sharp distinctions
are made between types of array. Whereas a scalar is a single item, not
indexed, a vector is a list or concatenation of items indexed by one index-
ing variable (or subscript) taking consecutive positive integer values; a
matrix is a set indexed by two such indexing variables; and so on. A single
number is ordinarily taken to be a scalar, though for special purposes it
can be made into a vector of one component, or a matrix with one row and one
column, ete. (Such a change of status is usually understood if the context
demands it.) Similarly, a simple list of numbers is ordinarily taken to be
a vector, though if we wish we can make from it a matrix having either one
row or one column, these being the "row-vector" or "column-vector" familiar
in metrix algebra, Vectors in APL are neither row-vectors nor column-vectors,
but just vectors!

Concatenation is denoted by a comma. Thus "1, 2, 3" denotes a vector
with three components. If V denotes either a vector or a scalar then "V, 5"
denotes the vector consisting of V followed by 5. In ordinary mathematical
notation, the individual components of a vector V might be denoted by
Vl, Vz’ .sss Using subscripts. In the present implementation of APL, since
subscripting is not conveniently feasible, the indexing variable is placed
in square brackets, and the components are written V[1], v[2], ... To select
a subset of components, indexed by a vector of index values, we may write
vii, 3, 5], for example, or V[I], where I is any vector of index values.
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The two indexing variables of g matrix are separated by a semicolon (a
comma would not do, for it would &enote concatenafion). Thus M[2;17 is the
element in the second row and first column of a metrix M. If I and J are
vectors of index values, M[I;J] is the submatrix of M consisting of the inter-
section of rows I and columns J. M[I;] is the submatrix of complete rows I,
and M[;J] is that of complete columns J. If I and J are scalars, M{I;] and
M{;J] are vectors.

Two special notations for vectors need to be noticed. (i) An iota
followed by a positive integer N stands for the vector of the first N positive
integers, (1, 2, ..., N). Iota followed by 0 stands for an empby vector.

{(ii)} A vector of numbers may be tTyped with the numbers separated by spaces

instead of commas, in which case the numbers will be understood to be tied

as though enclosed in parentheses.

Rho (p) stands for a function, either monadic or dyadic, concerned with
the size of arrays. As a monadie function, p followed by an array name, say
A, 1is a vector expressing the size of A. If A is a vector, pA is a vector
of length i, whose member is equal to the number of members in A. If A is
a matrix, pA is a vector of length 2, the number of rows of A followed by
the number of columns of A, If A is a vector, ppA is equal to 1, If A is
a matrix, ppA is equal to 2. Similarly for arrays of higher dimension. If
A is a scalar, pA is empty and ppA is equal to o {interpretations that are
consistent with the foregoing, though perhaps surprising).

Asg a dyadic function, p preceded by a vector A and followed by a scalar
or vector B is an array vhose size is A, formed from members of B concatenated
with itself if necessary, i.e. (B, B, B, ...). O0ApB is equal to A. See
Figure 2, lines 11 and 18. This dyadic p permits any matrix or higher-
dimensional array to be entered into the workspace from the keyboard. The
coefficients are first entered as a vector, and then the vector is restruc-
tured into the desired array by the p function.

Now at last we come to the application of the standard scalar functions
(such as were illustrated in Figure 1) to arrays. There are several different
ways in which such functions can be applied to arrays, and these must be dis-
tinguished., All the standard scalar functions are treasted exactly alike ~-
a remarkable feature that separates APL from other computer languages and
systems.



1+3 1. (Negative 1) plus 3.
2 2.
-1+3 3. 0-(1+3).
“u 4., Negative H; .
LieVe2w i 5. V is 2x(1,2,3,4).
2 4 6 8 6,
131 1] 7. Select some menbers of V.
2 6 2 2 8.
(pp V), 0V 9,
1 4 10, _
(eit+2 3pV 11. Use inasdbers of V to form a 2x3
g‘?f“é«%&z,a)pv
2 4 6 12, Matrix pripted with indentation
6 2 4 13, and line skip.
(poit)ypid 14,
2 2 3 15, That is: 2, (2, 3).
ML 16, Display first column of i,
2 8 17. A vector, not a “"colunn vector''.
10p1 18, Display a vector of ten ones.
i1 1 1 1 1 1 1 1 1 19,
[A+(0,01%H )+ 1«0, 5 20, First 6 terms of series for exp(0.01).
1 0.01 5E™5 1.6666666675 7 u4,166666667E 10 8.333333333F 13 21.
+/A 22, Sum of these terms.
1.010050167 23,
~/4 24, Sum with alternating signs to
‘ approximate exp(-0,01).
0.9900488337 25,
!5 26, Binomial coefficients.
15 10 10 5 1 27,
(13)e.515 28. An outer product.
11111 29.
05111 3

FIGURE 2. Continuation of Figure 1.
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First let us consider applications that leave the array size unchanged.
If £ is a standard monadic scalar function and A is an array, fA is an array
of the same size as A obtained by applying f to each member of A, If f is a
standard dyadic scalar function, and if A and B are arrays of the same size
{so that pA is equal to oB), then AfB is an array of the same size as each
of A and B, obtained by applying f to pairs of corresponding members. The
expression AfB retains a meaning if one argument is an array but the other
is scalar; the scalar is understood to be repeated to form an array of the
same size as the other argument, and then f is applied to pairs as before.
These usages are all illustrated in line 20 of Figure 2. We see that the
vector (o0, 1, 2, 3, 4, 5) is labeled N. The factorial sign in front of N
gives the vector of factorials of the members of N, that is

(1, 1, 2, 6, 24, 120).

The expression in parentheses stands for the scalar 0,01 raised to the power
of the members of N, that is the vector
4

2 6

- - 8 10
(1, 10°°, 10

, 10 7, 10 -, 10 3.

These two vectors are divided, term by term, to give the vector

-2 -4 -6 - -1
1, 105, 10, 10, 10 8, 107'%Y
1 1 2 6 2k 120

which is labeled A and displayed. See also lines 5 and 26.

Another way of applying a standard dyadic scalar function to an array
is to compress it, reducing its dimensionality by one. Suppose that A is a
vector., Then f/A stands for

AR eAf2)f ... fAL[pA],
where as usual execution is from right to left. Thus +/A is the sum of all
the elements of A, and X/A is the product. (See lines 22 and 24 of Figure 2.}
A familiar example of term-by-term multiplication followed by sum compression
(scalar product of vectors) is the evaluation of a one-dimensional integral
by a quadrature method such as Simpson's rule or a Gaussian formula. Iet ¥
denote the vector of ordinates and W the vector of corresponding weights.
Then the desired result is
+/¥xW.

If A is a matrix or higher-dimensional array, the coordinate to be com~
pressed must be specified, and that is done by "subscripting"” the compression
symbol /, by adding the coordinate number in square brackets. If A is a

matrix, +/[1]A means the vector of sums over the rows, that is, the column
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totals; whereas +/[2]A means the sums over columns, or the row totals. The
latter may also be written +/A, with the understanding that if the / is not
subscripted it relates to the last coordinate of the array A.

A standard dyadic scalar function f can be applied to two arrays A and
B to form an "outer product" of size (pA), pB; f is applied to every possible
pair consisting of a member of A and a member of B. When f is multiplication
and A and B are vectors we obtain the ordinary matrix outer product. ‘I’he
notation for outer product (small circle followed by period followed by f)
is shown at line 28 of Figure 2, where f is the function <. If f had been x,
this outer product would have been

T 2 3 y 5
2 4 6 8 10
3 6 9 12 15
and if £ had been +, the outer product would have been
2 3 4 5 &6
3 4 5 6 7
4 5 6 T 8
Much use is made of outer products, as we shall see.

The familisr inner product of matrix algebra involves two standard
dyadic scalar functions, multiplication and addition, and is denoted by
A+.XB., Here A and B are arrvays such that the last wember of pA is equal Vo
the first member of pB, More generally, an "inner product” Af.gB can be
forwed using any two standard dyadic scalar functions f and g. If A and B
are both vectors of the same length, the inner product A+.XB is just the
ordinary scalsr product, +/AxB.

This is an appropriate point to comment on the generality of definitions
in APL. Symbols are introduced to meet common needs, but they are defined
broadly, so that many possibilities are brought in "for free", some of which
turn out to be useful. Thus any language designed to handle matrices must
obviously encompas ordinary matrix addition. In APL we express the sum of
two matrices A and B of the same size by writing A + B. But this notation
does not relate specially either to matrices or to addition. For as we have
seen, A and B may be rectangular arrays of any size and dimensionality (the
same for A and B), or one mey be an array and the other a scalar; moreover,

+ may be replaced by any other standard dyadic scalar function. Many of these
possibilities are just as useful as the ordinary matrix sum. And similarly
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for the other array operations just described, especially the "outer product”.
Because of this generality in the definitions, statements in APL often have
a high degree of ambiguity (as, for example, the statement "C left-arrow A + B").
The statement acquires a precise meaning from its context. Superfluous informe-
tion -~ information that has previously been given or implied -- is not required.
If the size of A has been previously determined, it need not be mentioned when
the sum A + B is called for. In APL, as in ordinary English, reliance on con-
text leads to economy of expression. Oceasionally ambiguity is deliberately
exploited. For example, an argument in a regression program could be a vari-
able Y, standing either for a vector of observations or for a matrix formed
from several observation vectors of equal length set side by side which we
wish to analyse simultaneously in parallel., With a little care in writing,
the program may run equally well in either case.

We have now met most of the symbols likely to be useful in statistical
calculations. Rather than continue to illustrate individual usages as in
Figures 1 and 2, it will be more interesting to show a few small examples of
statistical calculation. We begin with direct "impromptu" dialog between
operator and machine, and then pass on to defined functions, which permit
carefully considered programs to be stored and used repeatedly.

These illustrations are not intended to represent the present art of
statistical analysis. For one thing, scatterplotting is not shown, although
the ease with which this can be done is possibly the most valusble gift of
the computer to statistics. The illustrations are intended merely to suggest
how a statistician may apply an APL terminal to some common tasks.,

3. ILLUSTRATIONS

{a} Dialogs

Figure 3 relates to observations of the number of heads showing when ten
coins have been thrown down. Twenty-five such observations were made by stu-
dents in an introductory statistics course. Iet us see whether the readings
conform with the usual theoretic idea of independent binomial variables with
probvability of heads equal to one half,

The twenty-five readings are entered and named Y at lines 1 and 2, and
counted {lines 3 and 4). Each reading must necessarily have one of the eleven
values {0, 1, 2, ..., 10). The frequencies of each of these values is called

for at line 5; an outer product of the value vector and Y, using the function s,



Y«6 77 3485732666 1. Load first 13 readings,

Ye¥Y, 4056722 564 7553 2, Concatenate renaining readings.

pY 3. Check how many.
25 4, (Good.)

(J«OP++/(04110)0,=Y 5. Ca!éﬁlate observed frequencies.
0 0 3 3 3 5 5 5 1 0 0 b,

YBAR«(+/Y)+pY 7. Sawple mean,

VAR+(+/(Y~YBAR)*2 )3 1+pY 8. Sanple variance.

YBAR , VAR , VAR%0 .5 . Display sauple mean, variance
5 3.166666667 1,779513042 19, °nd standard deviation.

5,2.5,2,5%0,5 ‘11, Theoretical values for
5 2.5 1.58113883 1o, comparison.

(LAY, T /7Y 13. Least and greatest menbers of ¥,
2 8 14,

0.01xL 0. 5+100xEF<+(25x2% 10)%(0,110)110 15. Calculate expected frequercies.
0.02 0.24 1.1 2.93 5.13 6,15 5.13 2,83 1.1 0.2 0,02 lo, Displayed

. A after _rounding.

EF<AEF(5 6 71,4«+/EF[14] 17. Do some grouping of EF,

OF«(+ /OF{\4]),0F(5 6 7],+/0F[12-14] 18. Ditto for oOF.

(+/EF) ,+/OF 19, Check the sums,
25 25 20. (Good.?

2 5pOF EF 21, Display as a matrix.

6 5 22,23, 5 5

4 ,296875 5.126853125 6,15234375 5.126953125 4.296875

ie+/J«( (OF~EF ) %2 ) +EF 4, Calculate chi-squared,
0.6750568182 0.8823816964 (,2158358135 0.00314360119° 0,6750568182 %g'.’msindividua]
2.4514 74747 26, Sum of tenns.

FIGURE 3.‘ hunbers of heads in 25 flips with 10 coins.
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is calculated, and then the eleven row totals are stored under the name OF

{for observed frequencies) and displayed at line 6. At line 7 we calculate
the sample mean and at line 8 the sample variance. Of course we know that

pY is equal to 25, so that we could just as well have specified 25 as the
divisor in line 7 and 24 as divisor in line 8. At line 9 we ask for a display
of these quantities and also the sample standard deviation. The mean, variance
and stendard deviation of the supposed binomial distribution governing the
observations are noted at lines 11 and 12 for comparison -- agreement is satis-
factory. At line 13 we ask for the least and the greatest of the twenty-five
readings (the answer is already implied by the observed frequencies at line 6,
but we see how this information can be asked for directly by compressing Y).

We now do an ordinary x? goodness~-of-fit test of the observed fregquencies
to the supposed binomial expectations. The expected frequencies (EF) are
called for, and displayed after rounding to two decimal places. We notice
that these expectations are low at both ends of the sequence. Following the
old rule of thumb that expectations should not be much less than 5 for use
in a x? test, we group the first four and last four members of EF (line 17)
and OF {line 18), and reassign the names EF and OF to these grouped frequencies.
Now we wonder if we did that right, so we check that both the expected and
the observed grouped frequencies add up to 25 {lines 19 and 20) and then we
display them in a 2 X 5 matrix. Finally we calculate the X? measure of good-
ness of fit, obtaining individual terms (line 25) and their sum {(line 26).

The latter value of 2.45 is entirely unremarkasble in relation to the standard
probability distribution tabulated as x? with 4 degrees of freedom. Observa-
tions seem to agree perfectly with theory.

Figure & relates to another set of observations made by students in the
introductory course. The students were asked to shuffle an ordinary pack of
52 playing cards, deal a hand of 13 cards and note the numbers of cards in
each of the four suits, clubs, diamonds, hearts, spades. Kach student did
this several times, and in all 60 hands were observed. The observations were
written down on a sheet of paper in four columns, sixty rows, like this:

8
1
1

Now O
£ o ow iy
o wou I

1



Me2 5 5 1 3 6 3 1 2 4% 6 1 4% 4 4 1 3 3 3 4 6 0 3 u 1.

ey 5 2 2 4 3 2 4 4 2 3 4 3 5 2 3 3 4 4 2 3 2 4 u 2.
deid4 3 1 5 3 4 3 3 4 2 6 1 2 4 3 4 4 5 22 5 1 4 3 3.
dedyd 4 3 5 3 3 4 3 4 4 1 4 1 3 3 6 4 5 4 0 4 1 5 3 b,
MeMdy2 2 4 5 3 1 7 2 5 5 1 2 3 5 1 4 3 3 3 4 1 6 4 2 5
et i3l830i338iiilesziutt ¥
#d,5 2 4 2 4 2 5 2 2 4 4 3 5 6 0 2 8 3 1 1 5 4 2 2 B
e R G O S S T S S S TS SN A S X
<60 Lpi 11,
ML1 2 3 58 59 6031 12,

2 5 5 1 13,

3 6 3 1 1k,

2 4 6 1 15,

b oy oy 1 1o,
2 5 u4°2 17.

5 4 3 3 18,
+/13%+ /i 19,

0 20,
+/Ue+/0 104 ' 21.

205 207 192 176 22,
780 . . 23,
C5«(16%39)x+/(i~3,25)*2 24,
CSBAR+(+/CS)+60 25,

CSBAR  (+/(CS~CSBAR)*2)+59 25,
3.48034188 7.2u514128 217,
(¢COF«+/0,58 1,21 2.37 4,11 6,250,203 28.

7 15 20 43 54 29,
[OF«(COF ,60) -0, COF ' 30,

7 8 5 23 11 6 : 31,
EF+6 9 15 15 9 6 ' 32,
+/((OF~EF }*2 ) +EF . ‘ 33.
11,65555556 3k,

FIGURE 4. 60 hands from a pack of p]éying cards. Explanation in the text;
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and so on, finishing

4 L 4 1

2 5 y 2

3 4 3 3
The observations were intended to illustrate the theory of sampling a finite
population.

In lines 1 to 10 of Pigure 4 the observations are entered from the data
sheet, row by row, as a vector M of length 240. In line 11, M is restructured
as a 60 X 4 matrix. As a check on the restructuring, the first three and last
three rows are asked for at line 12, for comparison with the data sheet. At
line 19, a check is made that every row of M sums to 13 (the requested size
of the hand) ~- the number of rows in which the row sum is not equal to 13
is counted and (line 20) found to be o. The four column totals of M and
their sum are asked for at line 21. We see that the sum (780) is egual to
13 X 60, as it should be.

At this point in the original treatment of the data, further checks of
accuracy in the entering of M were made. The data were entered afresh; each
column of the data sheet was entered as a vector and compared with the corres-
ponding column of M., We omit this check now for brevity.

From each row of M a 2 X 4 contingency table can be constructed showing
the compositions of the hand and of the balance of the pack. Thus from the
first row of M we have

ol

Hand 1

Balance of pack 1

Our purpose is to compare the empirical and the theoretical behaviors of

¢
2
1

o w i

H
5
8 12

some measure of independence in the sixty such tebles. The measure chosen
(arbitrarily) was the usual Xz criterion, The expected frequencies in each
table are

3.25 3.25 3.25 3.25

9.75 9.75 9.75 9.75
and for the first table, quoted above, the %° value is

( 1 1

3.25 © 9.75
The multiplier in front of the sum of squares reduces to (16 = 39).

) {(-1.25)% + (1.75)% + (1.75)% + (-2.25)%) .

At line 24 of Figure 4 the XZ corresponding to each row of M is called
for, under the name CS, a vector of 60 components. The mean and variance of
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the sixby values is found {lines 25-27), for comparison with the values 3
and 6 respectively for the standard probsbility distribution tabulated as
x? with 3 degrees of freedom.

We now proceed to compare the frequency distribution of the members of
CS with this tabulated probability distribution. We must form a list of grouped
observed frequencies, Reference to a table of the X? distribution with 3
degrees of freedom gave the following approximate quantiles: median {2.37),
lower and upper gquartiles {1.21, 4.11), lower and upper 10% points (0.58,
6.25). Cumulative observed frequencies (COF) of members of CS up to these
five values are called for at line 28, (It is unnecessary to gquote the five
values with greater precision, because the actual value set of the X? values
is discrete and none is closé to any of these theoretical quantiles -~ as is
readily demonstrated by displaying the whole of CS, though this is not done
in Pigure 4,) The cumulative observed frequencies are differenced at line 30
to yield the observed frequencies: 7 values of x? are below 0.58, 8 are
between 0.58 and 1.21, 5 are between 1.21 and 2.37, ..., 6 are above 6.25.
The expected frequencies for the tabulated X? distribution with 3 degrees of
freedom are quoted at line 32 (they are 60 multiplied by 10%, 15% 25%, ¢..).
The ordinary X? measure of agreement between lines 31 and 32 is called for
at line 33, The value obtained, 11.66, comes at roughly the upper 4% point
of the tabulated x? distribution with 5 degrees of freedom., Whether one
asserts that the discrepancy between observations and theory is "significant”
depends on temperament and philosophy.

In fact, the observed behavior of the x? values could differ from the
so-called x? distribution for two reasons other than mere chance: (i) the
shuffling of the pack and counting were perhaps not always well done; (ii})
even if shuffling and counting were perfect, the true probability distribu-
tion of the X? criterion, under the specified procedure of observation, is
discrete and only represented roughly by the continuous tabulated distribu-
tion., In further study of the data this true discrete distribution was
determined and found to agree very satisfactorily with the observed frequencies,

(b} Programs

Let us turn now to analysis of variance. We begin with the same kind of
“impromptu" dialog as above, and then introduce some stored programs.

As a simple example, we take a 4 X 6 table quoted by Bliss [ ! 1,
relating to an experiment in 6 randomized blocks comparing the heights of
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loblolly pines grown from seed from 4 different sources. The reading obtained
from each of the 24 plots is the average height of surviving trees after fif-
teen years in the plantation.

In the first two lines of Figure 5 the data are entered under the name
Y, a4 X 6 matrix, and then immediately displayed in lines 3-6. In line
7 the grand mean is calculated, displayed (at line 8), labeled GM, and sub-
tracted from each member of Y to make a mabtrix RY of residuals. The mem-
bers of RY are sqguared and summed to give the total sum of squares about
the mean (TSS). In line 9 are displayed TSS, its number of degrees of free-
dom (23), and the corresponding mean square.

Row effects are calculated at line 10, The row means of RY are found,
displayed (at line 11}, and labeled KE for "row effects”. The members of
RE are squared and summed and mulbtiplied by 6 to give the sum of squares for
rows (SSR). In line 12 are displayed SER , its number of degrees of free-
dom {3} and the corresponding mean square.

Column effects are similarly calcuisted at line 13. It will be noted
that the initial summing of EY is over its first coordinate to yield column
totals; otherwise line 13 locks similar to line 10. Answers are displayed
in lines 14 and 15,

In line 16 tke residuals after subtranction of row and column effects are
calculated. First an "open product” of the vectors CE and RE , using the
function + , is formed end svbtracted from RY +to yield the desired matrix
of residuals, which is remed E7 again, so that the meaning of RY changes
at this point, The members of the new RY are squared and summed to yield
the residual sunm of sguares R3S . %his is displayed in line 17, together
with the nunber of dogrees of Ircedom {15) and the correspording mean square.

At this point we can write out the following analysis of variance table:
g ¥

Stm of squares D.Z. M=2an square
Columms {blocks:? 17.16 5 3.43
Rows (sezed sgource) 171,36 | 3 57.12
Residual 22,00 15 1.47
Total about mean 210.51 23 2.15

We may now do various things with the residvusls RY . They may be dis-

plaved, and a scabtler plot cen te made of members of RY against the corres-



f+34,0 29.3 30.6 31.8 3.0 32,7 27.3 27.6 28.6 29.2 30.2 31.5 26.4 25.0 1.

DeYelt 6 pY, 26.6 25.2 27.4 26.2 24.8 24,3 26.0 26.5 25.8 24,2 2.

3=6.

4 29.3 30.6 31,8 3 az2.7

27.3 27.6 28.6 29.2 30,2 31.5

26.4 25 . 26.6 25.2 27.4 26.2

24.8 24,3 26 26.5 25.8 24,2
TSS, 23, (#23)xIS5«+ /+/RY*RY+Y~GM«{J«(+/+/Y)%24 _ .
28.13333333 8.
210.5133333 23 9,152753623 9,
S5R, 3, (%3)%SSR+6x+/RExRE<(}+(+/RY)*6 10.
3.933333333 0,9333333333 "2 ~2.866666667 11,
171,36 3 §7.12 ' 12.
S5C, 5, (45)%S50eux+/CExCEI(+/L1IRY )4 13,
~0.008333333333 ~1.583333333 ~0,1833333333 0.04166666667 1.216666667 0,5166666667 1k,
17,15833333 5 3,431666667 | 15,
RSS, 15, (+15)xRSS«+/+/RY*RY+RY-RE® .+CE 16.
21,995 15 1,466333333 17.
R58 14RSS-[edx(e(A«t/+ /RYXRE o , xCE ) x24+SSR*S5C 18.
0.1838114556 19.
4,139219534 : 20,
RSS1, 14, RSS1t1u 21.

17.85578047 14 1,27541289 22.

V LOBLOLLYDATA
1] Y+ 34 29,3 30.6 31.8 34 32,7 27,3 27.6 28,6 29,2 30.2 31.5 26.4% 25
(2] Y« 4 6 pY, 26,6 25.2 27.4 26,2 24.8 24.3 26 26,5 25,8 24,2
£3] ‘ux6 MATRIX (Y) OF AVERAGE HEIGHTS OF LOBLOLLY PINES IN FEET'
[4) 'SEED FROM 4 SOURCES (ROWS), 6 RANDOMIZED BLOCKS (COLUMNS)'
£5) ‘'WAKELY, 1944, QUOTED BY BLISS., VOL. I, TABLE 11.7.°
v

F!@RE 5. Analysis of a two-way table.
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ponding fitted values (Y - RY). At iine 18 we ask for calculation of Tukey's
nonadditivity test. Inside the parenthesis, the open product of RE with
CE , using multiplication, iz forted, multiplied term by term with RY and
summed; the sum is named A . The sum of squares of the members of the open
product of RE and CE is easily seen to be equal to SSR times S8SC,
divided by 24%. Thus what is displayed at line 19 is the regression coefficient
of the members of RY on the corresponding products of RE and CE . This
coefficient is multiplied by A to give Tukey's 1 degree of freedom term,
displayed at line 20, This is subtracted from RSS to give a new residual
sum of squares, labeled RSSi1 . At line 22 the latter is displayed, together
with the number of degrees of freedom {14%) and the corresponding mean square.
Thus the residual line in the above analysis of variance has been decomposed
into

Tukey's term 4,14 1 y.,i4
Residual 17.86 14 1.28

Evidence of nonadditivity is only weak -- as is not surprising with so few
residual degrees of freedon.

If we were to consider either repeating the above analysis after (say)
taking logarithms or reciprocals of Y , or performing similar analyses on
other sets of data arranged in a row-column crossclassification, we might
like to store the basic procedure. We might also like to store the data, in
case we should want to do something with this material on another occasion.
Programs are stored by the device of defining a function, and then having
the definition copied into a storage space for fubure reference.

There are several possible syntaxes for defined functions. The function
may have either no or one or two explicit arguments, that have to be specified
when the function is called. (A defined function may also have any number
of concealed arguments, since the program may refer to variable names that
need to have been defined before the function was called. For example, the
program might refer to a number named PI , not defined in the program; and
then provided we have previously given PI a value, such as perhaps 3.1#159,
the program will be able to calculate with this valuve.) A defined function
may have either no or one explicit range variable or result, together with
various other sorts of output, namely displays and stored material., The one
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or two explicit arguments and the one explicit result may be scalars or
arrays. The examples will show some of these possibilities.

First let us store the loblolly pine data. We may define a function
IOBIOLLYDATA with no arguments of any kind and no explicit result as output.
This function will have two items of output: (i) a typed statement giving a
little information, in case we should call for this function at a later date
when we have forgotten just what it is, and (ii} the stored matrix Y . To
open the definition of the function we type an upside-down delta and the
name of the function. The following rows are automatically numbered on the
left in square brackets., After each row has been typed and the release key
pressed, the instruction is stored but not executed. The definition is ter-
minated by typing another upside-down delta. Our first two lines of LOBLOLLY~-
DATA repeat what we did at lines 1 and 2 at the top of Figure 5. Lines 3-5
are in quotes. Rach of these lines will be read as a character vector, and
since it is not assigned anywhere it will be printed out (without quotes)
when the function is executed. Note that the information given includes the
name under which the data matrix is stored, namely Y .

Wow let us store the procedure for the analysis of varia.ncé. The big
question here is the degree of generality to be attempted. We might as well
make the program refer to any row-column crossclassification, not necessarily
of size 4 X 6, Tt will be convenient to have the output labeled. If we are
more ambitious we may consider a program to handle data in a rectangular array
of any number of dimensions, with various possibilities for estimating cross
main effects and interactions. But first let us try a simple two-dimensional
crossclassification.

We shall name the function ROWCOL and let it have one explicit argu-
ment, the matrix of readings Y . Like ILOBLOLLYDATA , this function will
have no explicit result as output, but will have both displayed and stored
output. A possible program for ROWCOI, is shown in Pigure 6.

Whereas most other computer languages have a considerable vocabulary
relating to the flow of an algorithm -- specifying conditional branches,
loops, etc. -~ APL has precisely one symbol for branching, the right-arrow
(~). DNothing appears to the left of this arrow (except for the statement
number in square brackets), and to the right appears an expression having
(usually) a nomnegative integer value. The arrow means "go to the statement

numbered" -~ for example, "— 3" means "go to the statement numbered 3". If



V ROWCOL Y
(11 3« (x/25pY)x2=ppY
[2]  +0,p0«'N0 GO.*
[3]  ('GRAND MEAN (GM) IS ';GM<(+/+/Y)3x/pY)
Lul VIOTAL SUM OF SQUARES ABOUT MEAN (1SS5), DEGREES OF FREEDOM AND MEAN SQUARE ARE'
[8] 53,0 1+x/p¥),(+ 14x/pY )x[SS5«+ [+ /RY*RY<Y -G}
{613 '  *ROWS*'
£71 ('EFFECTS (RE) ARE ';RE«(+/RY)+(p¥Y}[2])
[8] ('SUM OF SQUARES (SSR), D.F. AND MEAN SQUARE ARE ';55R,( 1+(pY)[11),(%
T14(pY )L 1])%SSR+(pY )L 21%+ /REXRE)
{91 ' *COLUMNS*' .
[101 (EFFECTS (CE) ARE ';CE<(+/[L1]RY)+(pY)[11)
[11] ('SUM OF SQUARES (SSC), D.F. AND MEAN SQUARE ARE ';5SC,( 1+(pY)[21),(=
T14(pY)[23)%55C«(pY )} 13x+ /CEXCE)
[12] ¢ *RESIDUALS «*
[13] ('SUM OF SQUARES (RSS), D.F. AND MEAN SQUARE ARE “3RSS,(x/ 1+pY),(%x/ 1+pY)xRS3S
<+ [+ [RY*RY+RY~RE e, +CE)
[14] -0,p3«'THE HATRIX OF RESIDUALS IS5 NAMED RY,?
{151 COMMENT--THIS PROGRAM PERFORMS A STANDARD ANALYSIS OF VARIANCE ON A ROW~-COLUME
CROSSCLASSIFICATION,

LOBLOLLYDATA

ux6 MATRIX (Y) OF AVERAGE HEIGHTS OF LOBILOLLY PINES I FEET
SEED FROM 4 SOURCES (ROWS), & RANDOMIZED BLOCKS (COLUMNS)
WAKELY, 1944, QUOTED BY Blj'ua. VoL, I, TABLE 11.7.

ROWCCL 1000%Y

GRAND MEAN (GM) IS 35.92360518
TOTAL SUM OF SQUARES ABOUT MEAN (TS53), DEGREES OF FREEDOM AND MEAN SQUARE ARE
313, ég;gsoz 23 13.61498044
*, %
EFFECTS (RE) ARE “4.6L46848272 ~1.43u914258 2,379661781 3,702100739
SUM OF Lg@gmcu (SSR}, D.F. AND MEAN SQUARE ARE 258.1231075 3 86.,04103583

ﬁFFECﬁS (CE') ARE 0.137187286 1.954854887 0.001469058796 ~0.1457289384
1, 478508235 0 K692740584
SuM 0;'{)?@[]%255 (55C), D.F. AND MEAN SQUARE ARE 25.07088723 5 5,014177446
*7 .
SUM OF SQUARES (RS5S), D.F. AND MEAN SQUARE ARE 29,95055547 15 1,996703698
THE MATRIX OF RESIDUALS IS NAMED RY.

RSS1+RSS-UeAx[Je(A++/+ /[RYxREe ., xCE)x24+5SR*S5C
T0,07821979588
1.649752151

RSS51, 14, RSS1:14
28.30080332 14 2,021485952

FIGURE 6. Continuation of Figure 5.
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there is no statement in the program having the indicated number, the command
is interpreted as "stop". In particular, since the statements are nﬁmbered
from 1 upwards, the statement "- 0" always means "stop". What épﬁears to the
right of the arrow is not always a number (scalar); it may be a vector. If
V is a non-empty vector, "- V" means "go to the statement whose number is
the first member of V', If V is an empty vector, the command "- V" means
"go to the next statement", as though the next statement number had been auto-
matically concatenated onto V . A branch is made conditional by the device
of computing the statement number to be gone to.

Iet us now consider the program for ROWCOL . The name of the argument
(Y) is a dummy veriable in the program. When we call the program the argu-
ment may have any name.

The first statement of ROWCOL 1is a conditional branch. It means: "If
the argument (Y) is a mabrix having at least 2 rows and 2 columns go to state-
ment 3; otherwise go to the next statement (2)." Statement 2 calls for the
phrase "NO GO." to be typed out and then execution is stopped. In fact state-
ment 2 could have been more simply written as the two statements:

21 'NO co.’ |

31 =-o

and then the following statements would have been numbered 1 higher. In the
compressed version shcwn in Figure 6, the character vector "NO GO." is first
displayed, then counted (there are 6 characters including the space and the
period), and then the statement reads "- 0,6", which means the same as "- o"
or "stop". Statements 1 and 2 have been put in merely to prevent accidental
application of the function to an argument that is not a suitable two-way
table.

Statement 3 corresponds to the last bit of line 7 in Figure 5. Mixed
output is called for, namely a character vector followed by a computed quan-
tity. The semicolon in the middle and the outer parentheses are mandatory
vhen such mixed output is specified. Statement 4 is a simple character vec-
tor to be typed out. Stabtement 5 corresponds to the rest of line 7 in
Figure 5. Statement 6 calls for an indented heading. Statements 7 and 8
correspond to line 10 of Figure 5. (Note that statements 8, 11, 13 and 15
have overflowed in this print-out onto a second line. With wider paper they
could be printed on one line.) Similarly for statements 9-11, corresponding
to line 13 of Pigure 5. Statements 12 and 13 correspond to line 16 of
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Figure 5. Finally, statement 14 calls for a note about the mabrix of
residuals to be typed out (so that the user will know what name this has
been stored under) and then exectution is stopped. Statement 1% is never
executed, because execution of the program must necessarily stop either at
statement 2 or at statement 14. Thus statement 15 is entirely useless bag-
gage when the program is executed; its only virtue is as a note to the reader
if a print-out of the program is called for.

In the lower part of Figure 6, we see IOBIOLLYDATA called. (Single
rather than double spacing has been used in the printing here.} Then ROWCOL
is called. TIf we had called ROWCOL Y , ‘the material of Figure 5 would have
been repeated. Instead, we have used as argument the reciprocals of the
original Y-values (multiplied by 1000). Execution terminates with the remark
sbout the mabtrix of residuals. (An unfortunate consequence of the single-
spaced printing is that the high-minus signs of the last two members of CE
look like underscoring of the line above.) We have then gone back to the
"impromptu" mode and called for Tukey's test again. The one-degree-of-
freedom term is now a little smaller than the residual mean square.

This function ROWCOL involves only very simple computation. Procedures
for regression tend to be more interesting computationally, but they raise a
variety of issues concerning objectives that are not too appropriate for dis-
cussion in the present context. We shall content ourselves by illustrating
some possibilities of handling multidimensional arrays in APL.

Figure 7 presents a function called POWERS +that calculates all powers
of a given square matrix from the zeroth to the Nth, for some given N . The
wmatrices are stacked in a three-dimensional array, which however is printed
out layer by layer as a sequence of matrices. Such powering of matrices is
of interest in the study of Markov chains.

The function has two explicit arguments, the matrix (M) to be powered
and the highest power () to be taken. The function also has an explicit
result, the stack (Z) of powers of M. Z, M and N are dummy variables
in the program. They may be replaced by any other veriable names when we
call the function. The progrem contains a loop, controlled by an index
variable J . We have no use for J outside the progrem, so J has been
declared to be a dummy (local) variable in the program by the device of
adding "; J" at the end of the function header,



'V 2+ POWERS N3J
L1l +3-(=/pit)x(2=ppM)*x0=ppl
L2) =uxa(W=LH)yx1si
{3 -+0,pl'w0 G0.°
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FIGURE 7. Powering a transition atrix.
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The first three statements of the progrem merely check whether N is
scalar and M is a square matrix (statement 1) and also whether N is a
positive integer (statement 2); if any of these conditions fails execution
stops (statement 3). Real business begins at statement 4, where a three-
dimensional array % of the desired size is formed out of 1's and 0's. The
gize of Z is (N+1)XpXp , where M is pXp . The first layer of Z is
a unit pxXp matrix; all the other layers are nonsense, but we shall change
them. Statement 5 initializes the loop variable J at the value 1. State~
ments 6 and 7 constitute the loop. Statement 6 says that the (J + 1)st layer
of 7 1is to be replaced by the ordinary inner matrix product of the Jth
layer and M . Statement 7 adds 1 onto J and returns execution to state-
ment 6 until the (N + 1)st layer has been replaced, and then it becomes "- o",
Statement 8 is a nonexecutable comment intended only for the reader of a
print-out of the program.

Below the definition of POWERS we see an example of its use. A 3 X 3
transition matrix P is defined. The 21 X 3 X 3 stack of its powers from
oth to 2o0th is labeled PP . The first three and last three layers of PP
are displayed; these matrices would usually be referred to as‘I, P, PZ, PIB,
P19, on. The average of all 21 layers of PP is then found, and finally
the Cesaro mean of the 21 layers. The latter calculation involves the inner
product of a vector of weights with the stack PP, an example of an inner
product of non-matrices.

After this brief excursion into three-dimensionality, let us return to
the generalization of our program ROWCOL . We shall consider the applica-
tion of analysis of variance to a rectangular array in an arbitrarily large

number of dimensions.

{c) Mulbidimensional arrays

The foregoing examples will have suggested that APL is beautifully
adapted to expressing computations with vectors, matrices and three-dimensional
arrays. Most computational problems arising in statistics are naturally
expressed in terms of such arrays of small fixed dimensionality.

Rectangular arrays of arbitrarily high dimensionality are sometimes pre-
sented by multiply classified data. To preserve the multidimensional struc-
ture during the analysis is attractive, rather than to bury it in some kind of
design matrix, although the latter procedure may be advisable if the data
array is incomplete,



-23-

Of course, with enough trouble in the programming, any computation with
multidimensional arrays can be expressed in any general-purpose computer
ia.nguage {even FORTRAN!). The interesting question is not what can be done
but how easily it can be done. Arrays of arbitrary dimensionality are less
easy to operate with in APL than arrays of given small dimensionality,
especially vectors and matrices., Quite possibly some changes will be made
in APL during the next year or two that will facilitate the handling of
multidimensional arrays. As APL now is, we find ourselves making trans-
positions that permute the coordinates of such arrays, and performing various
other kinds of restructuring, all of which are a bit troublesome to think
through.

In Figure 8 we see two functions, ANALYZE and EFFECT, which together
constitute a possible generalization of ROWCOL to arrays of arbitrary dimen-
sionality. A slightly wider vocabulary is used here than in our previous
programs.

We have already encountered the dyadic use of the function comma (, )
for concatenation in building up a vector. In ANALYZE, statements % and 6,
we see a monadic use of comma to destructure an array and reducé it to a
vector, Otherwise, all symbols in ANALYZE are already familiar. The first
two statements check that the argument Y has at least two dimensions and
each member of pY is not less than 2. At statement 3 a scalar J is set
equal to 1 and an array DF is set equal to a vector of 1's. J and DF
are needed later in EFFECT; no use is made of them now, Statement 4 cal-
culates and prints out the grand mean, and corresponds to statement 3 of
ROWCOL. Note that because we have placed the comma before Y , so reducing
Y to a vector, we are able to sum the whole of Y with a single "+/" instead
of by as many of these as there are dimensions of Y . Similarly statements
5 and 6 correspond to statements 4 and 5 of ROWCQL. That is as far as
ANATYZE tekes us. Statements 7-9 give a little information to the user and
then execution is stopped.

The purpose of the function EFFECT is to estimate a designated main
effect or a designated interaction. The argument V 1is a list of one or
more dimension (factor) mumbers, just one for a main effect, two or more for
an interaction. Only our understanding of the meaning of the dimensions of
Y -- which dimensions correspond to crossed factors, which to nested classi-
fications, and which of the latter is nested in which -~ will inform us what
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FiGukE 8. Analysis of variance of a multidinensional array.
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effects can meaningfully be asked for, and which interactions will serve as
error estimates for which comparisons. Provided all this is understood, suc-
cessive applications of EFFECT, with arguments arranged in order of nondecreas-
ing length (main effects first, then two-factor interactions, then three-
factor interactions, etec.), will yield a correct analysis of variance. EFFECT
goes to work, not on the original data array, but on the residual array RY
left by ANALYZE and by any previous applications of EFFECT. If (for example)
EFFECT 1 3 is called, this will yield an interaction of the factors
{dimensions) numbered 1 and 3, but just vhat this interaction means and how
many degrees of freedom it has will depend on whether previously either or
both of EFFECT 1 and EFFECT 3 have been called -- but not (say) on whether
EFFECT 2 has been called. To arrange the computation so that the complete
residual array is calculated at each stage would be suicidal for the operator
of a desk calculator, but is good practice with a big computer in order to
suppress round-off error.

EFFECT has an explicit result, corresponding to the vectors RE and CE
in ROWCOL. The user supplies a name (in place of the dummy Z shown) for
this effect if he wants to keep it, a different name for each effect. If
for example V is the vector (1, 3), he might choose to label the effect
matrix E13 . The names M, K, P, TIND appearing in the program are
designated as dummy variables by being listed after semicolons in the header.

The first three statements of EFFECT check that V is made up of one
or more members of the set (i, 2, 3, ..., poRY), with no repetitions. The
comma placed in front of V in statement 1 turns V into a vector even if
it has only one member (i.e. even if V 1is scalar); hence M 1is a matrix
even if it has only one row. In statement 2 a "logical" indicator vector
IND is obtained, consisting of 1's and 0's, of length peRY (the dimension-
ality of the data array); o's are in the places numbered by the members of V,
1's are elsewhere. Thus if the data array has five dimensions and V is
(1, 3), IND is (o0, 1, 0, 1, 1), Statements 4 and 5 are concerned entirely
with finding the number of degrees of freedom associated with effect vV,
and the number of residual degrees of freedom. DF 1is a matrix, of which
the first row was found in ANALYZE. Each time EFFECT is called, a new row
is added onto IF , consisting of the vector IND followed by {(at first)

a 0, which however is subsequently changed (in statement 5) into the number

of degrees of freedom in the effect. 1In the illustration at the foot of
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Figure 8 the data array is four-dimensional. After the third calling of
EFFECT, DF looks like this:

1 1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1 12
One detail in statement 5 calls for comment. In the middle we see the expres-
sion DF[; +/1+ppRY] . This represents the vector whose elements are the
last column of IF (before the final 0 has been changed)., Since monadic
p always yields a vector, 1+ppRY 1is a vector of unit length, not a scalar,
Putting "+/" in front reduces this wvector to a scalar without otherwise
changing it. Without the "+/" we should obtain the last column of DF as a
one-columq matrix instead of a vector. Distinctions of this kind are impor-
tant in APL ! The reader may now enjoy trying to decipher the somewhat tor-
tuous calculation expressed by statement 5.

Statements 6 and 7 of EFFECT are the ones that directly tackle the multi-
dimensional array RY . What we need to do is sum RY over ail coordinates
except those listed in V , divide by the appropriate divisor {(labeled X)
to form the effect array Z , and then from K repetitions of Z build up
an array of fitted wvalues, which is subtracted from RY +to form the new
array of residuals, named RY again. We also need to calculate the sum of
squares for the effect, named SS .

The way this is done is first to permute the coordinates of RY so
that the coordinates numbered V come last. Then the array is restructured
so that all the other coordinates are elided into one coordinate, and a
single summation is performed over that coordinate to yield Z . This,
together with the finding of S8, 1is specified in statement 6. In state-
ment 7, the array Z 1is repeatedly stacked on itself, and then the inverse
of the previous permutation is performed on the coordinates to yield the
array of fitted values, to be subtracted from RY . The transposition symbol
for permuting the coordinates of an array is a sort of backward-sloping phi.
On its right is the array to be transposed (say A), on its left a logical
vector (say T). The Ith coordinate of A appears as the T[I]th coordinate
of the result, Two other symbols in statements 6 and 7 are used in ways we

have not met so far. The compression symbol / may be preceded, not only
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by a standard dysdic scalar function like + or X , but instead by a
logical vector, here IND . The following vector (which is of the same
length as IND) is compressed by omission of members corresponding in posi-
tion to the o's in IND . Near the end of statement 6 two consecutive iotas
will be seen. The first of these is & dyadic iota, set between two permuta-
tion vectors of equal length. The result is a vector listing the positions
in the left~hand vector where the members of the right-hand vector occur.

As a brief illustration in the small amount of space available in the
lower part of Figure 8, these functions are applied to some data stored under
the name EGGDATA, taken from Bliss's book and not reproduced in Figure 8.
The four-dimensional array is a simple nested arrangement with no crossed
factors other than the highest-level classification (laboratories). BEGGDATA
is called, then ANALYZE, then EFFECT three times, and finally the residual
sun of squares is found. The standard analysis of variance table looks like
this:

Sum of squares D.f. Mean square

Between laboratories 0. 4430 5 0.0886
Between analysts within laboratories 0,2475 6 0.0412
Betwecen samples within analysts 0.1599 12 0.0133
Residual 0.1727 24 0.0072
Total about mean 1.0231 ;; 0.0218

The effects E1, Ei2, E123 are stored and can be displayed. The sums
of squares SS1, 8Siz, SS (we did/ggname this last) and RSS are all stored,
and we can check that their sum is equal to TSS , as it should be. The
final residual array RY 1is stored and available for further study.
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4. CONCLUDING REMARKS

Some comments on the foregoing description of APL are in order. Many
things have not been said. The following matters have not been explained:

(1) how to sign on and off,

(ii) how to move material in and out of storage,

(iii) how to correct an error in typing,

{(iv) how to add to, emend or "edit" a function definition (program),

(v} how to interpret error reports,

{(vi)  Thow to obtain various items of information, such as: (a) the
emount of unused space remaining in the active workspace, (b) the number of
users of the system currently signed on, (c) +the amount of central processor
time used since sign-on.

Such matters as these, for which excellent provision has been made, are
of immediate concern to anyone working at an APL terminal, but they are irr-
elevant to the purpose of this paper, which is to convey the flavor, and
suggest the suitability, of APL in expressing stabistical calculations.

Details of implementation of the language in conversational mode are in principle
open to modification, more so than the language itself--which may indeed be
extended by addition of new standard functions but could hardly be reorganized
or radically changed while still referred to by the same name. Implementation
details are explained in the manual.

The menual should be referred to also for precise definitions of APL
symbols. Explanations of symbols given above have been informal, intended to
help the reader make sense of the illustrations quickly, rather than to answer
the questions that will arise as soon as he tries to write in APL himself,

Many things have been omitted that were fully relevant to the purpose of
this paper. An attempt to show everything would have overwhelmed author and
reader both. The reader should particularly note this: Jjust because no
mention has been made of some topic that interests him, he ought not to conclude
without further inquiry that APL is unfit to handle that topic. Deliberately,
less than the full vocabulary of APL has been déscribed, and character manip-
ulation and format control have been barely mentioned, Interactive programs
in which the machine questions the user and acts on his answers have not been
illustrated. Many very common operations in statistical work, in particular
regression, have not been shown; nor has the organization of functions (programs)
together to form hlocks in a complex calculation, functions being called by
functions.
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Elegant programs for many common statistical calculations have been
composed by Smillie [13] . The scope of APL in that kind of use can be
seen very well from this collection. Many good progremming devices are illus-
trated.

In one respect, the modest illustrations in this report show correctly a
feature of APL terminal use that can be lost sight of. By all means let the
user be uninhibited in defining functions (storing programs), and then changing
and dropping them. But he should not forget that the terminal can also be
used like the old desk calculator, and he can always revert to the impromptu
dialog style. Often a very few APL symbols will express a useful block of
computation. In a less concise language such a block would be worth storing -
as a subroutine. To store it eg an APL function will only be profitable if
the user can remember the function's name and syntax the next time he wants
it--remember these sooner than he can reinvent the program, He should think
of stored programs always as aids to free dialog, not as controls to his
thinking (as program packages in other languages have so often been). The
whole of a complex calculation need not necessarily be enshrined in a stored
program.

That brings us to the last question we shall consider: what is the slant
of APL#

We are conscious of a great change when we lay aside paper-and-pencil
calculations, assisted possibly by slide rule or desk caleulator, and go
courting a computer. We have to think more explicitly about our procedures,
in matters that formerly were left to judgment or common sense, We must learn
new terminology, and--much more important--we find ourselves thinking about
the calculations in a somewhat different way. Any method of communicating
with the computer (language, program package, interactive system) has a slant;
it will not just transmit our thinking, it will modify our thinking. Some
things are easier to do than others, our attention is directed in particular
ways, unexpected questions must be answered. What slant does APL have for the
statistician?

None whatever of a direct statistical kind! There is nothing in APL
that can plausibly affect a statistician's philosophy, ethics, basic concepts
or theoretical ideas--except indirectly {(the more effortless computation becomes,
the more the statistician will compute, and some of his basic ideas will be
changed by the experience). By contrast, any computing system or program

package designed specially to aid the statistician will also to some extent
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bias his statistical thinking. Schatzoff's COSMOS begins with the six Beaton
operators. There is vastly more to COSMOS than that, the Beaton operators

can be avoided, but there is a definite "atmosphere" that will slant the user
toward the Beaton operators. It will come natural to him to think of some
problems in one way rather than another, to arrange his computations so. Of
course, this is far more so if the statistician relies on a program package
such as BMD . Then if he wishes to do something different from what the authors
intended he needs to be ingenious in "bucking the system" or “cheating". Of
course, again, the stabistician will be slanted or constrained in his thinking
if he relies on a library of statistical programs written in APL when he him~
gelf is too little familiar with APL to indulge effectively in free dialog.
Such slanting is not necessarily bad. For some users it is a positive help,
as has already been remarked in section 1.

Though APL has no substéntive statistical slant, it certainly has a
distinctive character among programming languages. The conciseness, the generality
and the affinity with mathematical thinking lead to transparency--or (to change
the metaphor) the machinery of APL creaks less than that of other languages.(S)
Apart from the shepr ease of expression, APL has at least one ﬁoticeable

algorithmic slant: it encourages us to replace loops whenever possible by
array operations, and therefore to think in terms of arrays in various numbers

of dimensions. n
Compare the mathematical concept of a finite sum, say 2= as s
i=1

with an APL sum reduction, say +/A . In the mathematical expression, no
particular order of summation is implied, because addition is associative. In
computation, addition is associative in integer arithmetic (provided there is
no overflow) but not in floating-point arithmetic, and there are occasions
when lack of associativity matters. The sum reduction in APL is carried out
in a known order (right to left). If we desire a different order of summation,
we may permute the array before reducing it. Thus we can control the order of
sumation as we wish, and yet use a notation (+/A) that views the array as
a whole and does not bring the order of summation into the limelight by making
us write a loop. Very often in practice that order of sumation is unimportant,
and we ought not to have it obtruded on us.

Thus we become sharply aware of the difference between repetitive operations
that can be expressed as operations on arrays defined at the outset, on the one
hand, and successive approximations and recursive definitions wherein some

kind of looping is essential, on the other hand. Our understanding of algorithms



is increased. For this sort of reason it may be claimed that the development

of APL has been a contribution not only to computation but to computer science.

Further reading., For further information about APL, whether or not a

terminal is available {0 experiment with, see the Falkoff-Iverson manual [47.
After some experience with an APL terminal, one may read Pakin's reference
menual [87 with interest. Many general topics concerning computing and computers
are discussed lucidly by Brooks and Iverson [2]. Iverson's orginal book on

his language [6] was a companion piece to the Brooks-Iverson book, but is far
more difficult to read. Moreover, there are differences in principle as well
as in detail between the language there presented and vwhat is now implemented

as a computer language. An examination of both books together shows the range
of ideas underlying APL. In a later book [7] Iverson illustrates his language
by a high-school-level account of transcendental functions. $Smillie has several
forthcoming articles on the use of APL in statistics.
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APPENDIX ON TERMS

Computers perform a great variety of logical tasks - numerical calculation
and many kinds of manipulation of symbols. A procedure for carrying out such
a task is sometimes called an algorithm (wrongly, according to Webster and
Oxford). A precise specification of such a procedure, especially one that
is coded so that it may be followed by a computer, is called a program., A

program consists of a sequence of statements or commands; some statements

specify the value of one or more quantities in terms of operations on other
quantities; other statements, known as branches, specify which statement
shall next be executed. A set of statements that are executed repeatedly,
because a branch at the end returns execution to the beginning of the set,
is called a loop.

For example, a well-known procedure for finding the square root y of a
given positive number x may be expressed informally thus: guess a value
for y ; find the average of y and the quotient (x + y)} ; this is a better
guess; repeat until the better guess is equal to the previous guess to however
many decimal places you want, This might be set out in numbered statements
more formslly thus: -

1. Set ¥y =1,

2, Set y' =y .

3. Set y = l(y' +Z .

2 y

. If |y -y'| > 107% , 80 to statement 2; otherwise, stop.

Here statements 1-3 are specification statements, statement 4 is a branch,
statements 2-4 constitute a loop.

Numbers are represented in the computer in the binary scale. A binary
digit is called a bit, and 8 bits are called a byte. Three sorts of numbers
are recognized in the APL system, namely (i) logical numbers equal to either
0 or 1, which can be stored as single bits, (ii) signed integers less than
231 (roughly 2.1 x 10°) in magnitude, which can be stored in 32 bits or
& bytes , (iii) signed floating-point numbers whose magnitude lies between
(roughly) 7.2 X 107°

to about 16 decimal digits -- such numbers can be stored in 6% bits or 8 bytes.
The number 7.2 X 1075

and the reciprocal of that and whose precision is equivalent

is an example of a number expressed in floating-point
decimal notation. An alternative notation for it, used sometimes by the computer
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in output; is T7.2E75 or 0.72BE76 , etc., where the number following the E
is a positive or negative integer denoting the power of 10 multiplying what
precedes the E ., (See line 21 in Figure 2.)

The precise way the output of the computer (or input to it) is displayed,
the number of spaces, the number of digits after the decimal point, whether
in floating-point or fixed-point notation, how many numbers to a line, etc., =--
all such details of display are called format.

We speak of the operator or user of an APL terminal. In some contexts

the word "operator" would be taken to mean the "system operator", but we do
not refer to that august personage.

The physical material of a computer is called hardware., Programming,
especially the basic system programming that permits the hardware to be used,
is called software.

Until recently, most computer operation has been in batch mode. Programs
are executed one after another, more or less in order of submission. Execution
has two steps, (i) a translation of the whole program into machine language,
known as compilation, (ii) running the compiled program. Results of each job
are put out through a printer or punch or transferred to tape, usually so that
they cannot be considered to be retained within the compuber, though if they
are punched or taped they may possibly be resubmitted for further processing
by the computer on another occasion., Results are returned minutes or hours
after submission of the program.

Recently there has been much interest in interactive use of computers,
vhere the computer responds rapidly and automatically retains material, so

that successive commands can be given. In the conversational mode almost

instantaneous response to relatively simple commands may be obtained through

{ime-sharing.



FOOTNOTES

{1} No attempt has been made here either to list all special systems relevant
to statistical work or to evaluate any of them. The writer himself has used
none of them, As for the tediousness of programming in FORTRAN etc., there
are other troubles besides the negotiation of arrays. WNot least of these

is the abundance of arbitrary conventions and restrictions that are hard to

remember accurately.

{2} In the best of all possible worlds special systems would themselves he
programmed in the best general-purpose algorithmic language arnd would permit

the user to leave the special system and carry on alone whenever he wanted to.

{3) "Most of the concepts and operations needed in a programming language

have already been defined and developed in one or another branch of mathematics.
Therefore, much use can and will be made of existing notations. However,

since most notations are specialized to a narrow field of discourse, a consistent
unification must be provided. For example, separate and conflicting notations
have been developed for the treatment of sets, logical variables, vectors,
matrices, and trees, all of which may, in the broad universe of discourse of

data processing, occur in a single algorithm." ([6], pp. 1-2)

(4) This description of the experimental APL system at Yorktown Heights

is based on my experience during a year of permitted use of the system. T
believe that the facts asserted are substantially correct as far as they go.
My concern is to suggest that something like this APL system can make
communication between statistician and computer so easy that the sheer effort
of coding is negligible. No need to employ expert programmers and unravel

the misunderstandings! Bven I now write my own programs!

(5} I should say that the machinery cresks a bit in statements 6 and 7 of
EFFECT in Figure 8.



REFERENCES
[1] BLISS, €. I. gStatistics in Biology, vol. 1. McGraw-Hill, New York, 1967.
[27 BROOKS, F. P. and IVERSON, K. E. Automatic Data Processing. Wiley,
New York, 1963.

[3]7 DmON, W. J. (ed.). BMD: Biomedical Computer Programs. UCILA Student
Store, Los Angeles, 1964,
[4] FAIKOFF, A. D. and IVERSON, K. E. The APL Terminal System: Instructions

for Operation. 1IBM, Yorktown Heights, W. Y., 1966, revised 1968,

[57 HILSENRATH, J., ZIEGIER, G. G., MESSINA, C. G., WALSH, P. J. and HERBOLD, R. J.
OMNITAB: A Computer Program for Statistical and Numerical Analysis.
Wational Bureau of Standards Handbook 10i. U.S8.G.P.0. 1966, reﬁised 1968,

[6] IVERSON, K. E. A Programming Language. Wiley, New York, 1962,
{717 IVERSON, X. E. Elementary Functions: An Algorithmic Treatment. Science
Research Associates, Chicago, 1966.

[81 PAKIN, S. APIN360 Reference Manual. Science Research Associates, Chicago,

1970 (issued for private distribution 1968).

{97 POMPER, I. H. et al. STORM: Statistical Oriented Matrix Program. IEM,
Yorktown Heights, N.Y., 1963. (Reference copied from J. M. Chambers
(147, p. 132.)

[10] Proceedings of the IBM Scientific Computing Symposium on Statistics, October
21-23, 1963, 1IBM, White Plains, N. Y. 1965.

[11] SCHATZOFF, M. Console oriented model building. Proceedings of the 20th

National Conference, Association for Computing Machinery, 1965.

[127] SCHATZOFF, M. Applications of time-shared computers in a statistics
curriculum. Journal of the American Statistical Association, 63(1968},
192-208.

[13] SMILLIE, K. W. STATPACKl: An APL Statistical Package. Department of
Computing Science, University of Alberta, Publication No. 9, 1968.

[14] statistical programming; papers and discussion at a meeting organized by
J. A. Nelder and B. E. Cooper, December 15, 1966. Applied Statistics,
16 (1967), 87~151.




Page

Page

Page

Page

Page

Page

ERRATA

8, line 1. TFor "the integer part of" read "the greatest integer

not greater than'".
8, line 5. For 14 read 16 .

8, line 7 from foot. For "functions defined by programs' read "functions

defined by the user".

9, line 9 from foot, and later. For "concatenation" the approved term

is "ecatenation”.

11, line 10 from foot. For "sum compression” the approved term is "sum
reduction". Similarly, lines 4-3 from foot, for "coordinate to be
compressed" read "coordinate to be reduced". And page 14, line 11, for

"compressing Y " read "reducing Y ". (But the operation described

later, page 25, last line, to page 26, line %, is known as compression

and the text is correct.)

17, line 14 from foot and later. For "open product” read "outer product".
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